Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Liver Int ; 43(10): 2309-2319, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37403133

RESUMEN

BACKGROUND & AIMS: Patients with non-alcoholic fatty liver disease (NAFLD) have impaired liver regeneration. Liver endothelial cells play a key role in liver regeneration. In non-alcoholic steatohepatitis (NASH), liver endothelial cells display a defect in autophagy, contributing to NASH progression. We aimed to determine the role of endothelial autophagy in liver regeneration following liver resection in NAFLD. METHODS: First, we assessed autophagy in primary endothelial cells from wild type mice fed a high fat diet and subjected to partial hepatectomy. Then, we assessed liver regeneration after partial hepatectomy in mice deficient (Atg5lox/lox ;VE-cadherin-Cre+ ) or not (Atg5lox/lox ) in endothelial autophagy and fed a high fat diet. The role of endothelial autophagy in liver regeneration was also assessed in ApoE-/- hypercholesterolemic mice and in mice with NASH induced by methionine- and choline-deficient diet. RESULTS: First, autophagy (LC3II/protein) was strongly increased in liver endothelial cells following hepatectomy. Then, we observed at 40 and 48 h and at 7 days after partial hepatectomy, that Atg5lox/lox ;VE-cadherin-Cre+ mice fed a high fat diet had similar liver weight, plasma AST, ALT and albumin concentration, and liver protein expression of proliferation (PCNA), cell-cycle (Cyclin D1, BrdU incorporation, phospho-Histone H3) and apoptosis markers (cleaved Caspase-3) as Atg5lox/lox mice fed a high fat diet. Same results were obtained in ApoE-/- and methionine- and choline-deficient diet fed mice, 40 h after hepatectomy. CONCLUSION: These results demonstrate that the defect in endothelial autophagy occurring in NASH does not account for the impaired liver regeneration occurring in this setting.


Asunto(s)
Hiperplasia Nodular Focal , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Hepatectomía/métodos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Regeneración Hepática , Células Endoteliales/metabolismo , Hígado/metabolismo , Dieta Alta en Grasa , Colina/metabolismo , Metionina/metabolismo , Autofagia , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
2.
Cardiovasc Res ; 119(1): 45-63, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35325061

RESUMEN

Extracellular vesicles (EVs) are nanosized vesicles with a lipid bilayer that are released from cells of the cardiovascular system, and are considered important mediators of intercellular and extracellular communications. Two types of EVs of particular interest are exosomes and microvesicles, which have been identified in all tissue and body fluids and carry a variety of molecules including RNAs, proteins, and lipids. EVs have potential for use in the diagnosis and prognosis of cardiovascular diseases and as new therapeutic agents, particularly in the setting of myocardial infarction and heart failure. Despite their promise, technical challenges related to their small size make it challenging to accurately identify and characterize them, and to study EV-mediated processes. Here, we aim to provide the reader with an overview of the techniques and technologies available for the separation and characterization of EVs from different sources. Methods for determining the protein, RNA, and lipid content of EVs are discussed. The aim of this document is to provide guidance on critical methodological issues and highlight key points for consideration for the investigation of EVs in cardiovascular studies.


Asunto(s)
Sistema Cardiovascular , Micropartículas Derivadas de Células , Exosomas , Vesículas Extracelulares , Infarto del Miocardio , Humanos , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Micropartículas Derivadas de Células/metabolismo , ARN/metabolismo , Infarto del Miocardio/metabolismo
3.
Stem Cell Rev Rep ; 19(1): 114-119, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35982357

RESUMEN

COVID-19 and infectious diseases have been included in strategic development goals (SDG) of United Nations (UN). Severe form of COVID-19 has been described as an endothelial disease. In order to better evaluate Covid-19 endotheliopathy, we characterized several subsets of circulating endothelial extracellular vesicles (EVs) at hospital admission among a cohort of 60 patients whose severity of COVID-19 was classified at the time of inclusion. Degree of COVID-19 severity was determined upon inclusion and categorized as moderate to severe in 40 patients and critical in 20 patients. We measured citrated plasma EVs expressing endothelial membrane markers. Endothelial EVs were defined as harboring VE-cadherin (CD144+), PECAM-1 (CD31 + CD41-) or E-selectin (CD62E+). An increase in CD62E + EV levels on admission to the hospital was significantly associated with critical disease. Moreover, Kaplan-Meier survival curves for CD62E + EV level showed that level ≥ 88,053 EVs/µL at admission was a significant predictor of in hospital mortality (p = 0.004). Moreover, CD62E + EV level ≥ 88,053 EV/µL was significantly associated with higher in-hospital mortality (OR 6.98, 95% CI 2.1-26.4, p = 0.002) in a univariate logistic regression model, while after adjustment to BMI CD62E + EV level ≥ 88,053 EV/µL was always significantly associated with higher in-hospital mortality (OR 5.1, 95% CI 1.4-20.0, p = 0.01). The present findings highlight the potential interest of detecting EVs expressing E-selectin (CD62) to discriminate Covid-19 patients at the time of hospital admission and identify individuals with higher risk of fatal outcome.


Asunto(s)
COVID-19 , Vesículas Extracelulares , Humanos , Mortalidad Hospitalaria , Selectina E
4.
PLoS One ; 17(10): e0275337, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36251660

RESUMEN

Type 2 diabetes (T2D) induces hyperglycemia, alters hemoglobin (Hb), red blood cell (RBC) deformability and impairs hemorheology. The question remains whether RBC breakdown and intravascular hemolysis (IVH) occur in T2D patients. We characterized RBC-degradation products and vesiculation in a case-control study of 109 T2D patients and 65 control subjects. We quantified heme-related absorbance by spectrophotometry and circulating extracellular vesicles (EV) by flow cytometry and electron microscopy. Heme-related absorbance was increased in T2D vs. control plasma (+57%) and further elevated in obese T2D plasma (+27%). However, large CD235a+ EV were not increased in T2D plasma. EV from T2D plasma, or shed by isolated T2D RBC, were notably smaller in diameter (-27%) and carried heme-related absorbance. In T2D plasma, higher heme-related absorbance (+30%) was associated to peripheral sensory neuropathy, and no other vascular complication. In vitro, T2D RBC-derived EV triggered endothelial stress and thrombin activation in a phosphatidylserine- and heme-dependent fashion. We concluded that T2D was associated with low-grade IVH. Plasma absorbance may constitute a novel biomarker of peripheral neuropathy in T2D, while flow cytometry focusing on large EV may be maladapted to characterize RBC EV in T2D. Moreover, therapeutics limiting IVH or neutralizing RBC breakdown products might bolster vasculoprotection in T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Traumatismos de los Nervios Periféricos , Biomarcadores/metabolismo , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Eritrocitos/metabolismo , Hemo/metabolismo , Hemoglobinas/metabolismo , Hemólisis , Humanos , Traumatismos de los Nervios Periféricos/metabolismo , Fosfatidilserinas/metabolismo , Trombina/metabolismo
5.
Immunol Rev ; 312(1): 4-5, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36134519
6.
J Leukoc Biol ; 111(1): 51-62, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34494296

RESUMEN

Extracellular vesicles (EVs) are membrane particles released by most cell types in response to different stimuli. They are composed of a lipid bilayer that encloses a wide range of bioactive material, including proteins and nucleic acids. EVs have garnered increasing attention over recent years, as their role in intercellular communication has been brought to light. As such, they have been found to regulate pathophysiologic pathways like inflammation, angiogenesis, or senescence, and are therefore implicated in key aspects atherosclerosis initiation and progression. Interestingly, EVs appear to have a multifaceted role; depending on their cargo, they can either facilitate or hamper the development of atherosclerotic lesions. In this review, we examine how EVs of varying origins may be implicated in the different phases of atherosclerotic lesion development. We also discuss the need to standardize isolation and analysis procedures to fully fulfil their potential as biomarkers and therapeutics for cardiovascular diseases.


Asunto(s)
Aterosclerosis/patología , Vesículas Extracelulares/patología , Animales , Aterosclerosis/metabolismo , Senescencia Celular , Progresión de la Enfermedad , Vesículas Extracelulares/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/patología
7.
Trends Endocrinol Metab ; 33(1): 1-3, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34802873

RESUMEN

Nutrient excess induces mitochondrial dysfunction, which participates in obesity-related complications. Obesity also associates with high cardiac oxidative stress, which contributes to myocardial dysfunction. Crewe et al. recently evidenced the pivotal role of adipocyte-derived extracellular vesicles (EVs) in cardiac oxidative stress responses and revealed their unexpected protective effect against ischemia/reperfusion injury.


Asunto(s)
Vesículas Extracelulares , Mitocondrias , Adipocitos/metabolismo , Animales , Modelos Animales de Enfermedad , Vesículas Extracelulares/metabolismo , Humanos , Obesidad/metabolismo
9.
Immunity ; 54(9): 1989-2004.e9, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34363750

RESUMEN

The migration of neutrophils from the blood circulation to sites of infection or injury is a key immune response and requires the breaching of endothelial cells (ECs) that line the inner aspect of blood vessels. Unregulated neutrophil transendothelial cell migration (TEM) is pathogenic, but the molecular basis of its physiological termination remains unknown. Here, we demonstrated that ECs of venules in inflamed tissues exhibited a robust autophagic response that was aligned temporally with the peak of neutrophil trafficking and was strictly localized to EC contacts. Genetic ablation of EC autophagy led to excessive neutrophil TEM and uncontrolled leukocyte migration in murine inflammatory models, while pharmacological induction of autophagy suppressed neutrophil infiltration into tissues. Mechanistically, autophagy regulated the remodeling of EC junctions and expression of key EC adhesion molecules, facilitating their intracellular trafficking and degradation. Collectively, we have identified autophagy as a modulator of EC leukocyte trafficking machinery aimed at terminating physiological inflammation.


Asunto(s)
Autofagia/fisiología , Células Endoteliales/fisiología , Infiltración Neutrófila/fisiología , Migración Transendotelial y Transepitelial/fisiología , Animales , Quimiotaxis de Leucocito/fisiología , Células Endoteliales/patología , Células Endoteliales de la Vena Umbilical Humana/inmunología , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Inflamación/inmunología , Inflamación/patología , Uniones Intercelulares/fisiología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/fisiología
10.
Nat Methods ; 18(9): 1013-1026, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34446922

RESUMEN

Extracellular vesicles (EVs) are nano-sized lipid bilayer vesicles released by virtually every cell type. EVs have diverse biological activities, ranging from roles in development and homeostasis to cancer progression, which has spurred the development of EVs as disease biomarkers and drug nanovehicles. Owing to the small size of EVs, however, most studies have relied on isolation and biochemical analysis of bulk EVs separated from biofluids. Although informative, these approaches do not capture the dynamics of EV release, biodistribution, and other contributions to pathophysiology. Recent advances in live and high-resolution microscopy techniques, combined with innovative EV labeling strategies and reporter systems, provide new tools to study EVs in vivo in their physiological environment and at the single-vesicle level. Here we critically review the latest advances and challenges in EV imaging, and identify urgent, outstanding questions in our quest to unravel EV biology and therapeutic applications.


Asunto(s)
Vesículas Extracelulares , Microscopía/métodos , Animales , Colorantes/química , Epítopos , Vesículas Extracelulares/química , Vesículas Extracelulares/patología , Vesículas Extracelulares/fisiología , Colorantes Fluorescentes/química , Humanos
11.
Eur Heart J ; 42(28): 2793-2795, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34115830
12.
J Clin Invest ; 130(5): 2630-2643, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32045382

RESUMEN

Arterial cardiovascular events are the leading cause of death in patients with JAK2V617F myeloproliferative neoplasms (MPNs). However, their mechanisms are poorly understood. The high prevalence of myocardial infarction without significant coronary stenosis or atherosclerosis in patients with MPNs suggests that vascular function is altered. The consequences of JAK2V617F mutation on vascular reactivity are unknown. We observe here increased responses to vasoconstrictors in arteries from Jak2V617F mice resulting from a disturbed endothelial NO pathway and increased endothelial oxidative stress. This response was reproduced in WT mice by circulating microvesicles isolated from patients carrying JAK2V617F and by erythrocyte-derived microvesicles from transgenic mice. Microvesicles of other cellular origins had no effect. This effect was observed ex vivo on isolated aortas, but also in vivo on femoral arteries. Proteomic analysis of microvesicles derived from JAK2V617F erythrocytes identified increased expression of myeloperoxidase as the likely mechanism accounting for their effect. Myeloperoxidase inhibition in microvesicles derived from JAK2V617F erythrocytes suppressed their effect on oxidative stress. Antioxidants such as simvastatin and N-acetyl cysteine improved arterial dysfunction in Jak2V617F mice. In conclusion, JAK2V617F MPNs are characterized by exacerbated vasoconstrictor responses resulting from increased endothelial oxidative stress caused by circulating erythrocyte-derived microvesicles. Simvastatin appears to be a promising therapeutic strategy in this setting.


Asunto(s)
Eritrocitos/fisiología , Mutación con Ganancia de Función , Janus Quinasa 2/genética , Janus Quinasa 2/fisiología , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/fisiopatología , Animales , Antioxidantes/farmacología , Aorta Torácica/efectos de los fármacos , Aorta Torácica/fisiopatología , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/fisiopatología , Micropartículas Derivadas de Células/fisiología , Arteria Femoral/efectos de los fármacos , Arteria Femoral/fisiopatología , Humanos , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Trastornos Mieloproliferativos/complicaciones , Estrés Oxidativo , Simvastatina/farmacología , Vasoconstricción/efectos de los fármacos , Vasoconstricción/fisiología
13.
Int J Cardiol ; 307: 24-30, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31668659

RESUMEN

BACKGROUND: Left atrial appendage occlusion (LAAO) has emerged as a valid alternative to oral anticoagulation therapy for the prevention of systemic embolism in patients with non-valvular atrial fibrillation (NVAF). Microvesicles (MVs) are shed-membrane particles generated during various cellular types activation/apoptosis that carry out diverse biological effects. LAA has been suspected to be a potential source of MVs during AF, but the effects its occlusion on circulating MVs levels are unknown. METHODS: N = 25 LAAO and n = 25 control patients who underwent coronary angiography were included. Blood samples were drawn before and 48 h after procedure for all. A third sample was collected 6 weeks after procedure in LAAO patients. In N = 10 extra patients, samples were collected from right atrium, LAA and pulmonary vein during LAAO procedure. Circulating AnnV + procoagulant, endothelial, platelets, red blood cells/RBC and leukocytes derived-MVs were measured using flow cytometry methods. RESULTS: In the LAAO group, AnnV+, platelets, RBC, and leukocytes MVs were significantly increased following intervention, whereas only AnnV + MVs levels significantly rose in controls. The 6-w analysis showed that RBC-MVs and AnnV + MVs levels were still significantly elevated compared to baseline values in LAAO patients. The in-site analysis revealed that leukocytes and CD62e + endothelial-MVs were significantly higher in left atrial appendage compared to pulmonary vein, suggesting a local increased production. No major adverse event was observed in any patient post procedural course. CONCLUSIONS: LAAO impacts circulating MVs and might create mild pro-coagulant status and potential erythrocytes activation due to the device healing during the first weeks following intervention.


Asunto(s)
Apéndice Atrial , Fibrilación Atrial , Procedimientos Quirúrgicos Cardíacos , Dispositivo Oclusor Septal , Apéndice Atrial/diagnóstico por imagen , Apéndice Atrial/cirugía , Humanos , Resultado del Tratamiento
14.
J Hepatol ; 72(3): 528-538, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31726115

RESUMEN

BACKGROUND & AIMS: Previous studies demonstrated that autophagy is protective in hepatocytes and macrophages, but detrimental in hepatic stellate cells in chronic liver diseases. The role of autophagy in liver sinusoidal endothelial cells (LSECs) in non-alcoholic steatohepatitis (NASH) is unknown. Our aim was to analyze the potential implication of autophagy in LSECs in NASH and liver fibrosis. METHODS: We analyzed autophagy in LSECs from patients using transmission electron microscopy. We determined the consequences of a deficiency in autophagy: (a) on LSEC phenotype, using primary LSECs and an LSEC line; (b) on early stages of NASH and on advanced stages of liver fibrosis, using transgenic mice deficient in autophagy specifically in endothelial cells and fed a high-fat diet or chronically treated with carbon tetrachloride, respectively. RESULTS: Patients with NASH had half as many LSECs containing autophagic vacuoles as patients without liver histological abnormalities, or with simple steatosis. LSECs from mice deficient in endothelial autophagy displayed an upregulation of genes implicated in inflammatory pathways. In the LSEC line, deficiency in autophagy enhanced inflammation (Ccl2, Ccl5, Il6 and VCAM-1 expression), features of endothelial-to-mesenchymal transition (α-Sma, Tgfb1, Col1a2 expression) and apoptosis (cleaved caspase-3). In mice fed a high-fat diet, deficiency in endothelial autophagy induced liver expression of inflammatory markers (Ccl2, Ccl5, Cd68, Vcam-1), liver cell apoptosis (cleaved caspase-3) and perisinusoidal fibrosis. Mice deficient in endothelial autophagy treated with carbon tetrachloride also developed more perisinusoidal fibrosis. CONCLUSIONS: A defect in autophagy in LSECs occurs in patients with NASH. Deficiency in endothelial autophagy promotes the development of liver inflammation, features of endothelial-to-mesenchymal transition, apoptosis and liver fibrosis in the early stages of NASH, but also favors more advanced stages of liver fibrosis. LAY SUMMARY: Autophagy is a physiological process controlling endothelial homeostasis in vascular beds outside the liver. This study demonstrates that autophagy is defective in the liver endothelial cells of patients with non-alcoholic steatohepatitis. This defect promotes liver inflammation and fibrosis at early stages of non-alcoholic steatohepatitis, but also at advanced stages of chronic liver disease.


Asunto(s)
Autofagia/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Hepatitis/etiología , Cirrosis Hepática Experimental/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Adulto , Animales , Apoptosis/genética , Proteína 5 Relacionada con la Autofagia/deficiencia , Proteína 5 Relacionada con la Autofagia/genética , Tetracloruro de Carbono/efectos adversos , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Hígado/patología , Cirrosis Hepática Experimental/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/patología
16.
Mol Ther Nucleic Acids ; 18: 363-374, 2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31634682

RESUMEN

Long non-coding RNAs (lncRNAs) have potential as novel therapeutic targets in cardiovascular diseases, but detailed information about the intercellular lncRNA shuttling mechanisms in the heart is lacking. Here, we report an important novel crosstalk between cardiomyocytes and fibroblasts mediated by the transfer of lncRNA-enriched extracellular vesicles (EVs) in the context of cardiac ischemia. lncRNA profiling identified two hypoxia-sensitive lncRNAs: ENSMUST00000122745 was predominantly found in small EVs, whereas lncRNA Neat1 was enriched in large EVs in vitro and in vivo. Vesicles were taken up by fibroblasts, triggering expression of profibrotic genes. In addition, lncRNA Neat1 was transcriptionally regulated by P53 under basal conditions and by HIF2A during hypoxia. The function of Neat1 was further elucidated in vitro and in vivo. Silencing of Neat1 in vitro revealed that Neat1 was indispensable for fibroblast and cardiomyocyte survival and affected fibroblast functions (reduced migration capacity, stalled cell cycle, and decreased expression of fibrotic genes). Of translational importance, genetic loss of Neat1 in vivo resulted in an impaired heart function after myocardial infarction highlighting its translational relevance.

17.
18.
J Extracell Vesicles ; 8(1): 1587567, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30949308

RESUMEN

Extracellular vesicles (EVs) mediate targeted cellular interactions in normal and pathophysiological conditions and are increasingly recognised as potential biomarkers, therapeutic agents and drug delivery vehicles. Based on their size and biogenesis, EVs are classified as exosomes, microvesicles and apoptotic bodies. Due to overlapping size ranges and the lack of specific markers, these classes cannot yet be distinguished experimentally. Currently, it is a major challenge in the field to define robust and sensitive technological platforms being suitable to resolve EV heterogeneity, especially for small EVs (sEVs) with diameters below 200 nm, i.e. smaller microvesicles and exosomes. Most conventional flow cytometers are not suitable for the detection of particles being smaller than 300 nm, and the poor availability of defined reference materials hampers the validation of sEV analysis protocols. Following initial reports that imaging flow cytometry (IFCM) can be used for the characterisation of larger EVs, we aimed to investigate its usability for the characterisation of sEVs. This study set out to identify optimal sample preparation and instrument settings that would demonstrate the utility of this technology for the detection of single sEVs. By using CD63eGFP-labelled sEVs as a biological reference material, we were able to define and optimise IFCM acquisition and analysis parameters on an Amnis ImageStreamX MkII instrument for the detection of single sEVs. In addition, using antibody-labelling approaches, we show that IFCM facilitates robust detection of different EV and sEV subpopulations in isolated EVs, as well as unprocessed EV-containing samples. Our results indicate that fluorescently labelled sEVs as biological reference material are highly useful for the optimisation of fluorescence-based methods for sEV analysis. Finally, we propose that IFCM will help to significantly increase our ability to assess EV heterogeneity in a rigorous and reproducible manner, and facilitate the identification of specific subsets of sEVs as useful biomarkers in various diseases.

19.
Pediatr Pulmonol ; 54(1): 66-72, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30485728

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH) results from pulmonary vascular disease and may eventually lead to right heart failure and death. Vasodilator therapy has greatly improved PAH prognosis. Circulating microvesicles are considered as surrogate markers of endothelial and hematopoietic cell activation. AIM: Thus, our purpose was to determine if MVs are upregulated in pediatric PAH such as reported in adult patients, and to analyze the impact of vasodilator therapies on MV count and function. PATIENTS: Population study consisted of 26 patients of median age 6.09 years, with Congenital Heart Disease (CHD) and elevated pulmonary vascular resistance (CHD-PAH) or idiopathic PAH (iPAH). RESULTS: Compared to healthy controls, all circulating MV subpopulations were found higher in untreated PAH patients. No significant differences of annexin-V+ total MV, endothelial, or leukocyte derived-MV counts were found between untreated patients and those receiving oral vasodilator therapies. Conversely, platelet MVs were significantly lower in the group treated with SC-treprostinil compared with both untreated PAH and oral therapy groups (P = 0.01), and exhibited a significant decrease of phospholipid procoagulant activity. Control samples treated in vitro with treprostinil at therapeutic concentrations showed as expected a significant decrease of platelet aggregation but also a reduced spontaneous MV generation. CONCLUSION: Our results suggest that treprostinil, besides vasodilation, might exert its beneficial effect through an inhibition of platelet activation, resulting in a decreased number and procoagulant activity of circulating MVs.


Asunto(s)
Antihipertensivos/administración & dosificación , Epoprostenol/análogos & derivados , Hipertensión Pulmonar Primaria Familiar/tratamiento farmacológico , Hipertensión Pulmonar/tratamiento farmacológico , Adolescente , Adulto , Micropartículas Derivadas de Células/efectos de los fármacos , Niño , Preescolar , Coagulantes/química , Epoprostenol/administración & dosificación , Femenino , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/tratamiento farmacológico , Humanos , Lactante , Pulmón/fisiopatología , Masculino , Hipertensión Arterial Pulmonar/complicaciones , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Circulación Pulmonar/efectos de los fármacos , Vasodilatadores/administración & dosificación , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...